
NASA/CR-2000-210097
ICASE Report No. 2000-16

Aircraft Trajectory Modeling and Alerting Algorithm
Verification

Cesar Munoz
ICASE, Hampton, Virginia

Victor Carreno
NASA Langley Research Center, Hampton, Virginia

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Prepared for Langley Research Center
under Contract NAS1-97046

April 2000

Dire QUALITY INSPECTED 3

20000424 218

AIRCRAFT TRAJECTORY MODELING AND ALERTING ALGORITHM

VERIFICATION*

CESAR MUNOZ+ AND VICTOR CARRENO*

Abstract. The Airborne Information for Lateral Spacing (AILS) program at NASA Langley Research

Center aims at giving pilots the information necessary to make independent approaches to parallel runways

with spacing down to 2500 feet in Instrument Meteorological Conditions. The AILS concept consists of

accurate traffic information visible at the navigation display and an alerting algorithm which warns the

crew when one of the aircraft involved in a parallel landing is diverting from the intended flight path. In

this paper we present a model of aircraft approaches to parallel runways. Based on this model, we analyze

the alerting algorithm with the objective of verifying its correctness. The formalization is conducted in the

general verification system PVS.

Key words, trajectory modeling, alerting algorithm, formal methods, theorem proving

Subject classification. Computer Science

1. Introduction. The Airborne Information for Lateral Spacing (AILS) [12, 3, 6] is a project being

conducted at NASA Langley Research Center. Its objective is to reduce traffic delays and increase airport

efficiency by enabling approaches to closely spaced parallel runways in Instrument Meteorological Conditions.

Approaches to parallel runways are currently limited to 4300 feet in Instrument Meteorological Condi-

tions. Specially equipped airports with fast scan radars, high resolution monitoring systems, and approach-

specific air traffic controllers can perform parallel approaches to 3400 feet [14, 8]. The AILS project aims at

shifting the responsibility of maintaining separation during parallel approaches from the air traffic controller

to the aircraft crew. Via the AILS concept, approaches to parallel runways 2500 feet apart in Instrument

Meteorological Conditions are expected.

AILS eliminates the delay inherent in the communication between air traffic controller and crew by

displaying parallel traffic information in the cockpit. The degree of safety is enhanced by an alerting system

which warns the crew when one of the aircraft involved in a parallel landing is deviating from the intended

flight path. The alerting algorithm is a critical part of the AILS concept. Flaws in its logic could lead to

non-alerted collision incidents. The algorithm has been extensively tested in simulators and in real flights.

The objective of this work is to conduct a formal analysis of the alerting algorithm in order to discover

any possible errors that have not been detected during testing and simulation. In particular, we develop a

formal model of parallel landing scenarios. Based on this model, we study the behavior of the AILS algorithm

with respect to predictions of collision incidents.

The formalization presented in this paper has been developed in the general verification system PVS

[11]. We use a stylized-I^T^X PVS concrete syntax and assume the reader is familiar with standard notations

of higher-order logic.

"This work was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046

while the first author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA

Langley Research Center, Hampton, VA 23681-2199, USA.
^Institute for Computer Applications in Science and Engineering (ICASE), Mail Stop 132C, NASA Langley Research Center,

Hampton, VA 23681-2199, USA, e-mail: munoz@icase.edu.
t Assessment Technology Branch, Mail Stop 130, NASA Langley Research Center, Hampton, VA 23681-2199, USA, e-mail:

v.a.carreno@larc.nasa.gov.

TABLE 2.1

Alerting sequence

Evader Intruder

1 Localizer alert (one dot deviation)

2 Localizer alert (two dot deviation)

3 Caution alert (traffic)

4 Caution alert (traffic)

5 Warning alert (collision)

6 Warning alert (collision)

The remainder of this paper is organized as follows. Section 2 gives an overview of the AILS system.

Section 3 describes the alerting algorithm and its abstraction in PVS. A formal model of aircraft trajectories

is presented in Section 4. Section 5 contains the main properties that have been proven in PVS. Section 6

summarizes our work and suggests future research directions. Finally, the appendix includes our PVS formal

model which is electronically available at: http://shemesh.larc.nasa.gov/people/vac/ails.pvs.

2. System Description. In a typical independent parallel approach, aircraft intersect their localizer

track (longitudinal runway center) approximately 10 nautical miles from the runway threshold (see Fig-

ure 2.1). During localizer intersection, aircraft have a 1000 feet vertical separation. After the aircraft are

established in their localizer track, vertical separation is eliminated and aircraft start a normal glide path for

landing. If an aircraft deviates from its airspace, the AILS system provides 6 alert levels, depending on the

severity of the deviation. Table 2.1 shows an alerting sequence as seen in the evader and intruder aircraft

primary and navigation displays.

All alerts in the intruder aircraft are expected to be followed by a corrective maneuver. The evader

aircraft is not expected to perform an evasive maneuver until a warning alert is issued, at which time landing

is aborted and an emergency escape maneuver is performed. Notice that the intruder aircraft always receives

a caution or warning alert before the respective caution or warning alerts are issued to the evader. A parallel

runway approach is illustrated in Figure 2.1.

Several assumptions were made in the development of the alerting algorithm. These assumptions are

justified by physical characteristics and operational constraints. They are as follows:

• Time is discrete and divided in increments of 0.5 seconds. We call this value tstep.

• The algorithm is executed every tstep seconds.

• The rate of turn is determined by the bank angle and ground speed.

• The speeds of the aircraft are constant. Henceforth, we use intruderSpeed and evaderSpeed as

the constant speed values of the intruder and evader aircraft, respectively.

• The AILS system starts operating when the aircraft are on their localizers. At this time the aircraft

are approximately at the same altitude.

• The vertical separation between the aircraft is assumed to be 0 during a landing approach.

• Only the intruder aircraft will deviate from its path in a parallel approach. The evader aircraft stays

in its localizer.

It should be noted that the experimental AILS system, as currently designed, forms part of the Traffic

Alert and Collision Avoidance System (TCAS) [13]. In this work, we assume that the AILS alerting algorithm

is running in isolation from other aircraft components. In addition, we concentrate on the caution and

r -H-
V

>*V"

VSf

Two Dot Deviation

One Dot Deviation
Localizcr Track A

FIG. 2.1. Parallel runway approach

warning alerting kernel of the AILS alerting system. The one dot and two dot deviation alerts present a

simple scenario and can be easily added to our model by a separate function as it is done in the current

implementation.

3. The AILS Alerting Algorithm. The alerting algorithm determines when an alarm will be trig-

gered by calculating possible collision trajectories and comparing the future aircraft locations with predeter-

mined time and distance thresholds. The algorithm is executed in two modes every tstep seconds: (1) the

first mode assumes its own aircraft is a threat to the adjacent aircraft and the adjacent aircraft is following

the localizer; (2) the second mode assumes the adjacent aircraft is a threat to its own and the own is following

the localizer. In either mode, one aircraft is the intruder and one is the evader.

When the intruder aircraft is not changing direction, i.e., its bank angle is 0, the algorithm determines

if the two aircraft are diverging or converging and the point of closest separation. This is done by obtaining

the derivative of the distance between the aircraft and solving for time when the derivative equals zero as

follows.

(3.1) Ax{t) = xin{t) - xev(t)

(3.2) Ay(t) = yin(t) - yev(t)

(3.3) — Ax(t) = intruderSpeed x cos(B) — evaderSpeed

(3.4) — Ay(i) = intruderSpeed x sin{6)

(3.5) B(t) = y/'A,(t)2 + Av(tf

±m = A,(t)x|A,(f) + A»(l)x|A,(t)
dt v^W

For a time t, {xin(t),yin(t)) and (xev(t),yev(t)) are the coordinates of the intruder and evader aircraft,

respectively, and 9 is the heading angle of the intruder aircraft. When j-tR{t + r) = 0, we get the time r,

relative to t, of the point of closest separation of the aircraft. Time r has been calculated as

,,~ Ax(t)x£Ax(t) + Ay(t)x±Ay(t)

H>

vV
Closest separation

FIG. 3.1. Converging tracks

T -^r JUV

circular
arc path
at current
bank angle

Tangent
Tracks

1.5 to 3 degrees

FIG. 3.2. Radial trajectory and tangential tracks

Equations 3.1 to 3.7 were formally deduced, from initial physical properties, by using the computer

algebra tool MuPAD [4]. Notice that r is undetermined when the aircraft are parallel and the ground speeds

are equal. In this case, the alerting algorithm defines r(t) = 0 for any t.

For a time t, if r(£) is negative or zero, the tracks are diverging or parallel, respectively. If r(t) is greater

than zero, the tracks are converging and r(t) will be the time of closest separation (Figure 3.1). When tracks

are diverging or parallel, the algorithm checks the aircraft separation at the present time against the alert

threshold distances (cdist and wdist in Figure 2.1). When tracks are converging, the algorithm compares

the time and distance of closest separation against time and distance thresholds, respectively.

When the intruder aircraft is changing direction, i.e., its bank angle is not 0, the algorithm calculates

the radius of the turn and the rate of change of direction. Tangential tracks are calculated from the arc path

as to produce tangents which arc 1.5° to 3° in angular separation (Figure 3.2). For each of these tangential

tracks the algorithm determines whether the two aircraft tracks are diverging or converging and performs

time and distance comparisons as explained above.

The original AILS algorithm was written in FORTRAN at Langley Research Center. It has been revised

several times and the latest version flown in the Boeing 757 experimental aircraft was provided by Honeywell.

For the work presented in this paper, we created a high level abstract model of the alerting algorithm in

the PVS language. The algorithm model uses the same strategy as the FORTRAN algorithm to determine

if alarms are triggered, as explained above. All of the PVS declarations involved in the modeling of the

algorithm can be seen in the theory file available at http://shemesh.larc.nasa.gov/people/vac/ails.

pvs.

The model of the algorithm is a function which takes the states of the aircraft and returns a boolean

value corresponding to whether the alarm is triggered or not. The type of the alarm, caution or warning,

depends on the threshold parameters. The state of the aircraft is defined by a record:

state : TYPE

real,

real,

[-180. ..180]

[-45...45]

[# x

y

heading

phi

#]

We recall that access to records are written in PVS as function calls, i.e., if s is a state, x(s) refers

to the field x of the state s. Thus, x(s) and y(s) are the position coordinates, heading(s) is the angle

between the flight path and the localizer track which range between —180° and 180°, and phi(s) is the

aircraft bank angle between —45° and 45°.

The model of the alerting algorithm is given next.

larcalert(evader.intruder:state): bool =

LET phi = phi(intruder) IN

LET trkrate = gx (180/7r) xtand(phi)/intruderSpeed IN

IF trkrate = 0 THEN '/. Direction is not changing.

chktrack(O) '/. Check strait tracks.

ELSE '/. Direction is changing

LET arcrad = '/. Calculate arc radius.

intruderSpeed2/(gxtand(phi)) IN

LET maxstep = alert_time/tstep IN

LET idtrk =

IF abs (trkrate) > 3-THEN 1 '/. This determines

ELSIF abs (trkrate) > 1+1/2 THEN 2 '/. how often

ELSIF abs (trkrate) > 3/4 THEN 4 '/. tangential

ELSE 8 '/. tracks are

ENDIF IN '/, calculated,

arc_loop(evader,intruder,arcrad,trkrate,idtrk,0.maxstep)

ENDIF

where g is the gravitational acceleration constant (approx. 32.2 feet/seconds2).

The first part of the function is exercised when the track rate (trkrate) is zero and there is no change

in the intruder's heading. The chktrack function is used to determine if an alarm will be triggered. The

function chktrack makes the calculation for converging or diverging tracks, according to Equations 3.1

to 3.7. If the tracks are diverging, the function chkrange is called to compare present locations against time

and distance threshold (ctime and cdist, respectively). If the tracks are converging, predicted locations at

caution time or time of closest separation, whatever is smaller, are compared. The structure of the definitions

of chkrange and chktrack are given next.

chkrange(range,t:real) : bool =

range < cdist A t < ctime

chktrack(t:real): bool =

LET range = iJ(t) IN

LET tau = r{t) IN

IF tau < 0 THEN '/. Tracks are diverging (or parallel) .

chkrange(range,t) '/. Check range at prediction time t.

ELSE '/• Tracks are converging.

IF t+tau > ctime THEN '/. Closest separation beyond caution alert time.

Ä(ctime) < cdist '/. Check range at caution threshold.

ELSE '/• Closest separation within caution alert time.

R(t+tau) < cdist '/, Check range at time of closest separation.

ENDIF

ENDIF

The second part of the function larcalert handles the case when intruder is changing direction. The arc

radius is calculated and the function arcloop generates the tangential tracks from the arc trajectory. The

function arcloop is a recursive function modeling a DO-LOOP statement. It is used to iterate the function

chktrack on tangential tracks every idtrk time steps. Its actual definition is too long to be included in the

paper and can also be seen in the theory file as pointed above. The structure of the function is:

arc_loop(evader,intruder,arcrad,trkrate,idtrk,iarc.maxstep): RECURSIVE bool =

calculate positions of aircraft

IF not time for a tangential track THEN

IF chkrange (...) THEN '/. Check range at that point.

TRUE '/. Trigger an alarm.

ELSE

arc_loop(. . .) '/. Go to new iteration.

ENDIF

ELSE '/, Time for tangential tracks.

IF chktrk(...) THEN '/. Check track at this point.

TRUE '/. Trigger an alarm.

ELSE

arc_loop(. . .) '/■ Go to new iteration.

ENDIF

ENDIF

Based on the idtrk argument and the step in the loop iarc, the function arcloop determines if a

tangential track is calculated or not. If a tangential track is not calculated, the function chkrange compares

the distance between the calculated positions of the aircraft and the distance threshold. The function chktrk

is used to check for collisions on all the tangential tracks in the loop. The function arcloop terminates

when one of the functions chkrange or chktrack triggers an alarm or when iarc has reached maxstep.

In the PVS model, we are using an axiomatic definition of the square root function (sqrt, see Section

5). Trigonometric functions (sind, cosd, and tand, for sine, cosine, and tangent of angles in degrees,

respectively) are defined by series approximations. However, as we will see in Section 5, we also provide

axioms about trigonometric functions to facilitate the proofs.

As we have seen, the AILS algorithm considers a limited set of possible trajectories for the intruder

aircraft, i.e., assuming a constant radius turn at the original bank angle, only tangent track escapes to the

turn arc are considered. The developers of the algorithm state that this assumption is reasonable under

normal circumstances, i.e., the intruder aircraft is not intentionally trying to collide with the evader aircraft.

However, to evaluate the behavior of the algorithm in a wider range of possible landing scenarios, a more

general model of trajectories for the intruder aircraft is necessary. In the next section, we develop such a

model.

4. Parallel Landing Scenarios. According to the characteristics and assumptions of the AILS algo-

rithm, we propose a time-discrete model with time increments of tstep seconds.

In our model of trajectories, as in the case of the alerting algorithm, intrusion paths are determined by

the bank angle and ground speed of the intruder aircraft. Given a ground speed gs > 0, a bank angle <j>, the

heading turn rate is given by

tand(4>) x g x 180
trkratefgs, ffl) = ,

gs X 7T

where g is the gravitational acceleration constant.

Although under normal operation the bank angle of a commercial aircraft is limited to —30° to 30°, we

allow the bank angle to range from —45° to 45°. For a minimum ground speed of 180 feet per second, it

means a maximum heading turn rate of about 6° per second. These data produce very aggressive blundering

situations quite consistent with worst cases scenarios tested by the AILS developing group. Incidentally, the

function trkrate is well-defined for bank angles in the range [—45 .. .45].

DEFINITION 4.1 (Intruder trajectory). An intruder trajectory of length n for an aircraft with state s

and ground speed gs is a sequence of states SQ ... sn such that so = s and for 0 < i < n,

1. \phi{Si)\ < 45,

2. \heading(si) — heading{si-\)\ = tstep x trkrate(gs,phi(si)),

3. x(si) = x(si-i) + gs x tstep x cosd(heading(Sj)), and

J. y(si) = T/(,Sj__i) + gs x tstep x sind(heading(si)).

In PVS, we define the next state of an intruder aircraft at state s and bank angle (/> by the function

next_intruder_state(s:state,0:[-45...45]): state =

LET trk = heading(s) + tstepX trkrate (intruderSpeed,phi (s)) IN

s WITH [

x := x(s) + intruderSpeedxtstepXcosd(trk) ,

y := y(s) + intruderSpeed xt step x sind (trk) ,

heading := trk,

phi := (j>

]

We recall that WITH is the record (and function) overriding operator in PVS.

We model an intruder trajectory by a recursive function having as parameters an initial state s, a bank

angle assignation for each iteration step df, and the iteration step n, as follows

intruder_trajectory(s:state, df:[posnat—>[-45...45]] , n:nat):

RECURSIVE state =

IF n = 0 THEN s

ELSE

LET sn = next_intruder_state(s, df(n)) IN

intruder_traj ectory(sn,df,n-1)

ENDIF

MEASURE n

For example, given an intruder aircraft at initial state s and bank angle equal to 0, a trajectory of length

n such that the plane follows a straight line to its current heading angle is given by s0 . ..sn, where s0 = s

and for 0 < i < n,

Si — intruder_trajectory(s, A(n : posnat) : 0,i).

For the evader aircraft, we assume that it stays in its localizer with a constant speed and constant

heading of 0°. Heading and bank angles are irrelevant in the definition of an evader trajectory.

DEFINITION 4.2 (Evader trajectory). An evader trajectory of length n for an aircraft with state s and

ground speed gs is a sequence of states so ... sn such that so = s and for 0 < i < n,

1. x{.Si) — x(si-i) + gs x tstep and

2- y(si) = y(s0)-

For an initial state s of an aircraft, its state after n steps in a evader trajectory is defined by evader_traj ectory (s, n)

as follows

evader_trajectory(s:state, n:nat): state =

(#
x(s) + evaderSpeedXtstepXn,

y(s),
heading(s),

phi(s)

x

y

heading

phi

#)

We are interested in trajectories leading to collision incidents. Aircraft are said to be in collision if the

distance between them is less than or equal to collisionRange. In our development, we consider 200 feet

for collisionRange, which is approximately the wing span of a Boeing 747.

distance(si,s2:state): real =

sqrt((x(s2)-x(sl))2 + (y(s2)-y (si))2)

collision(sl,s2:state): bool =

distance(si,s2) < collisionRange

DEFINITION 4.3 (Collision scenario). Given an intruder trajectory so .. .sn and an an evader trajectory

to .. ■ tn, we said that they lead to a collision incident at step i, for 0 < i < n, if collision(si,ti) holds.

In PVS,

collision_scenario(intruder,evader:state, df: [posnat—¥ [-45...45]],

imat) :bool =

collision(intruder_trajectory(intruder,df,i),

evader_trajectory(evader,i))

We have implemented the model of trajectories, together with our high-level version of the alerting

algorithm, in Java. The implementation, available in the same location as the PVS theory files, serves a

double purpose. First, it allows us to visualize all the collision trajectories for a given time and initial values

of the intruder and evader aircraft. Second and more importantly, by studying those trajectories, we were

able to extract conjectures that we have then formally proven in PVS. Conversely, as we will mention later,

we have rejected some conjectures by finding counter-examples via simulation of collision trajectories,

In the next, section, we address the formal verification of properties of collision trajectories for our model

in PVS, and we study the behavior of the alerting algorithm with respect to that model.

5. Main Properties. The objective of this modeling and verification work is (i) to show that the

method implemented in the algorithm to predict trajectories and trigger alarms is adequate and does not

lead to dangerous situations, or (ii) to explore possible trajectory scenarios which lead to unacceptable risk.

To this effect we created models of the algorithm and aircraft trajectories in PVS, created simulations in

JAVA to visualize the behavior and characteristics of the landing scenario, and verified in the computer

algebra tool MuPAD some axiomatic definitions we made in PVS.

Before stating the main properties, it should be said that most of the proofs require reasoning on

continuous mathematics. We have assumed some uninterpreted functions and axioms in PVS, for instance

sqrt(x:real) : {z:real I z2 = x and z > 0}

sin_cos_sq_one : AXIOM

V (x:real): sind(x)2 + cosd(x)2 = 1

More involved properties, grounded on Equations 3.1 to 3.7, are also necessary, e.g.,

derivative_eq_zero_min : AXIOM

V (tl,t2:real): i?(tl+r(tl)) < Ä(tl+t2)

asyraptotic_decrease_zero_to_tau : AXIOM

V (t,tl,t2:real) :

r(t) > 0 A t2 < r(t) A tl < t2

i?,(t+tl) > Ä(t+t2)

asymptotic_increase_tau_to_zero : AXIOM

V (t,tl,t2:real) :

-r(t) < 0 A t2 > r(t) A tl > t2

i?.(t+tl) > i?.(t+t2)

Axiom derivative_eq_zero_min states that at time t, r(t) would be the time of closest separation

between the aircraft. Axioms asymptotic_decrease_zero_to_tau and asymptotic_increase_tau_to_zero

state that function R asymptotically decreases for times less than r(i) and asymptotically increases for

times greater than r(t), respectively. As we have mentioned before, the equations of Section 3 have been

symbolically deduced in MuPAD.

Our intention is to show that for all aircraft trajectories which lead to a collision and all initial states1,

an alarm is issued i seconds before a collision. In our formal development, we have found upper and lower

bounds for the values of i.

One of the first properties that we have proven is that an alarm (caution or warning) is triggered when

the distance between the aircraft is within the alerting range (cdist or wdist, respectively). This property

holds independently of the values of any other state variables of the aircraft.

1 Recall from Section 2 that initial states are when the aircraft are on their localizers.

alarm_when_alerting_distance : THEOREM

V (evader,intruder:state) :
alerting_distance(evader,intruder) => larcalert(evader,intruder)

The theorem above puts the greatest lower bound on the elapsed time between an alert and a collision

that we have found so far. For an alerting distance of 1400 feet and an intruder ground speed of 250 feet

per second this results in an alarm at least 4 seconds before collision.

An effort to prove that a caution is issued for a value of (ctime-1) (ctime being defined as 19 seconds)

resulted in an unprovable conjecture. Indeed, we have found a counter example of a collision trajectory

which allows two aircraft to' fly to a distance of less than 1300 feet, without triggering an alarm 11 seconds

before the collision.

move_2500_to_1300_no_alarm_before_ll_seconds : THEOREM

3 (intruder,evader:state, df: [posnat—> [-45. . .45]] , n:nat) :

collision_scenario(intruder.evader,df,n+ll/tstep) A

distance(indruder,evader) = 2500 A

distance(intruder_traj ectory(intruder,df,n),

evader.trajectory(evader,n)) < 1300 A

V (i:[0...n]):

-i larcalert (evader.trajectory (evader ,i) ,

intruder_traj ectory(intruder,df,i))

By combining these theorems, we can state that for some trajectories an alarm will sound no more than

11 seconds before collision and that for all cases an alarm will sound at least 4 seconds before a collision. We

believe that for all cases the greatest-lower bound time when the alarm will sound prior to a collision is closer

to 11 than to 4. In order to reveal that bound, we need to find strong invariants on collision trajectories.

Notice, for example, that for an intruder trajectory So ...sn and an evader trajectory t0 ... tn, it cannot be

the case that they lead to a collision incident at step n when distance(,s0,tn) > R, where

R — collisionRarige+intruderSpeedxnxtstep.

Indeed, any intruder aircraft out of the circle of center (x(£n) ,y(i„)) and radius R, needs a larger time

than nxtstep to reach any point of the circle of center (x(tn) ,y(£n)) and radio collisionRange. The

property above can be expressed in PVS as follows.

collision.invariant : LEMMA

V (intruder,evader:state, df: [posnat—»-[-45. . .45]] , n:nat) :

collision_scenario(intruder.evader,df,n)

V (i:[0...n]):
distance(intruder_traj ectory(intruder,df,i),

evader_trajectory(evader,n)) <

collisionRange+intruderSpeedx (n-i) Xtstep

The proof of this invariant requires the following lemmas.

straight_line_farthest: LEMMA

V (intruder:state,df:[posnat-+[-45...45],n:nat) :

LET straight_trajectory = A(n:posnat):0 IN

10

distance(intruder,

intruder_traj ectory(intruder,df,n)) <

distance(intruder,

intruder_trajectory(intruder,straight_traj ectory,n))

absolute_distance: LEMMA

V (intruder:state,n:nat) :

phi(intruder)=0

=>

LET straight.trajectory = A(n:posnat):0 IN

distance(intruder,

intruder_traj ectory(intruder,straight_traj ectory,n))

= intruderSpeedxnXtstep

Lemma straight_line Jarthest states that an intruder trajectory following a straight lines reaches a point

farthest than any other trajectory, while Lemma absolute_distance states that the length of an intruder

trajectory following a straight line is the same as intruderSpeedxnXtstep.

We intend to use the above invariant and lemmas, together with properties derived from the physical

trajectories, to find a bound greater than 4 seconds for any collision scenario. Under particular assumptions

of the intruder bank angle (given by the function df), we have proven that there exists a point outside of

the alerting threshold range where the alarm is issued. The conjecture is expressed in PVS as follows

bound : CONJECTURE

V (intruder,evader:state, df: [posnat-»[-45. . .45]] , n:nat) :

collision_scenario(intruder.evader,df,n)

=$>

3(i:[0...n]) :

-i alerting_distance(evader_traj ectory (evader ,i),

intruder_trajectory(intruder,df,i)) A

larcalert(evader_traj ectory(evader,i),

intruder_traj ectory(intruder,df,i))

We are trying to generalize the proof for an arbitrary value of df. If the attempt is successful, it gives a new

greatest lower bound of 5 seconds.

6. Conclusion. Several case studies have been performed on the application of hybrid automata to

the modeling of systems which include continuous and discrete domains. In particular, a simplified TCAS

system was modeled in [9] using hybrid automata. That work focuses on establishing a hybrid model of the

closed loop system formed by several aircrafts flying under TCAS assumptions. Although it is claimed that

the model is suitable for formal analysis, there is no explicit attempt to automate the proof process. On the

other hand, state exploration techniques have been used to analyze the system requirements specification of

TCAS II written in RSML [7]; we refer for instance to [5, 2]. These works focus on the reactive aspect of

the whole system.

In the work presented in this paper, we constructed a formal model of the kernel of an alerting algorithm

and we studied its behavior with respect to a model of collision trajectories. In our analysis, we assumed

that the alerting algorithm runs in isolation of the other components of the system. We defer the integration

of the alerting algorithm with rest of the system, for example TCAS, for future research.

An abstract model of the algorithm and its properties were developed in the general verification system

11

PVS. We complemented the prover capabilities with computer algebra tools. Indeed, differential equations,

resulting from physical phenomena, were mechanically verified in MuPAD. Models of the algorithm and

collision trajectories were implemented in Java. The implementation allowed us to explore collision scenarios

before performing rigorous attempts to prove properties.

Although we have confidence in the conjectures that have been declared as axioms, work is being per-

formed [10] in the development of a PVS library on transcendental functions which complements a previous

work on mathematical analysis in PVS [1]. Hence, it might be possible in the near future to replace the

axiomatic definitions with theorems.

Lower and upper bounds for a time when an alarm will be issued before a collision were found. Our

immediate goal, in the verification of the AILS algorithm, is to prove certain facts about, the characteristics

of the aircraft trajectories. We hope that these facts allow us to prove the adequacy of the alerting algorithm

for a time large enough to avoid any possible collision incident.

REFERENCES

[1] B. DuTERTRE, Elements of mathematical analysis in PVS, in Ninth international Conference on Theo-

rem Proving in Higher Order Logics TPHOL, J. Von Wright, J. Grundy, and J. Harrison, eds.,

vol. 1125 of Lecture Notes in Computer Science, Turku, Finland, Aug. 1996, Springer Verlag,

pp. 141-156.

[2] W. CHAN, R. ANDERSON, P. BEAME, AND D. NOTION, Improving efficiency of symbolic model check-

ing for state-based system requirements, Technical Report TR-98-01-03, University of Washington,

Department of Computer Science and Engineering, Jan. 1998.

[3] T. DOYLE AND F. MCGEE, Air traffic and operational data on selected u.s. airports with parallel

runways, Tech. Report NASA/CR-1998-207675, NASA, May 1998.

[4] B. FUCHSSTEINER et al., MuPAD User's Manual, John Wiley and Sons, Chichester, New York, first ed.,

Mar. 1996. Includes a CD for Apple Macintosh and UNIX.

[5] M. HEIMDAHL AND N. LEVESON, Completeness and Consistency Analysis of State-Based Requirements,

in Proceedings of the 17th International Conference on Software Engineering, Apr. 1995, pp. 3-14.

[6] S. Koczo, Coordinated parallel runway approaches, Tech. Report NASA-CR-201611, NASA, October

1996.

[7] N. LEVESON, M. HEIMDAHL, H. HILDRETH, AND J. REESE, Requirements specification for process-

control systems, Technical Report ICS-TR-92-106, University of California, Irvine, Department of

Information and Computer Science, Nov. 1992.

[8] A. LlND, Two simulation studies of precision runway monitoring of independent approaches to closely

spaced parallel runways, Tech. Report AD-A263433 ATC-190 DOT/FAA/NR-92/9, NASA, March

1993.

[9] J. LYGEROS AND N. A. LYNCH, On the formal verification of the TCAS conflict resolution algorithms,

in Proceedings 36th IEEE Conference on Decision and Control, San Diego, CA, Dec. 1997, pp. 1829-

1834. Extended abstract.

[10] U. MARTIN AND H. GOTTLIEBSEN, Computational logic support for differential equations and mathe-

matical modeling. Personal communication, 2000.

[11] S. OWRE, J. M. RUSHBY, AND N. SHANKAR, PVS: A prototype verification system, in 11th Interna-

tional Conference on Automated Deduction (CADE), D. Kapur, ed., vol. 607 of Lecture Notes in

12

Artificial Intelligence, Saratoga, NY, June 1992, Springer-Verlag, pp. 748-752.

[12] L. RINE, T. ABBOTT, G. LOHR, D. ELLIOTT, M. WALLER, AND R. PERRY, The flight deck perspective

of the NASA Langley AILS concept, Tech. Report NASA/TM-2000-209841, NASA, January 2000.

[13] RTCA, Minimum operational performance standards for traffic alert and collision avoidance system,

(TCAS) airborne equipment ~ consolidated edition, Guideline DO-185, Radio Technical Commission

for Aeronautics, One McPherson Square, 1425 K Street N.W., Suite 500, Washington DC 20005,

USA, 6 Sept. 1990.

[14] G. WONG, Development of precision runway monitor system for increasing capacity of parallel runway

operations, AGARD, Machine Intelligence in Air Traffic Management, (1993), p. 12.

Appendix. The AILS Alerting Algorithm in PVS.

AILS Alerting Algorithm in PVS

Victor Carreno (v.a.carreno@larc.nasa.gov)

Cesar Munoz (raunoz@icase.edu)

ICASE - NASA Langley Research Center

This model is an abstraction of the algorithm written by

Bill Capron

NASA Langley Research Center

and described by

Mike Jackson

Honeywell Technology Center

Assumptions

* Coordinate system:

+—>x —> landing direction

* Two dimensional

* Ground speed is constant

AILS : THEORY

BEGIN

•/.— Types

Bank : TYPE = subrange(-45,45)

deg_heading : TYPE = subrange(-180,180)

State: type =

[# x

y
heading

real,

real,

deg_heading,

13

phi Bank

#]

'/„— Constants

collisionRange

alertTime

alertRange

intruderSpeed

evaderSpeed

tstep

divtstep(x:real)

maxStep

g

real = 200

real = 19

real = 1000

real = 250

real = 250

real = 1/2

real = x*2

real = 1 + divtstep(alertTime)

real = 32+2/10

'/,— Variables

intruder,

evader VAR State

df VAR [posnat->Bank]

phi VAR Bank

s,sl,s2 VAR State

x,range VAR real

t,tl,t2 VAR real

n VAR nat

m VAR posnat

iarc VAR subrange(0,maxStep)

arcrad.trkrate VAR real

idtrk VAR posnat

'/„— Useful functions

pi : real = 3141592/1000000

cosd(x): real

= LET r = x*pi/180 IN

1 - expt(r,2)/2 + expt(r,4)/24 - expt(r,6)/720 + expt(r,8)/40320

sind(x) : real

= LET r = x*pi/180 IN

r - expt(r,3)/6 + expt(r,5)/120 - expt(r,7)/5040 + expt(r,9)/362880

tangent_well_defined : AXIOM

14

FORALL (phi) : cosd(phi) /= 0

tand(phi): real =

sind(phi)/cosd(phi)

mod(n,m): RECURSIVE nat =

IF n < m THEN n

ELSE mod(n-m,m)

ENDIF

MEASURE n

sq(x): nonneg_real = x*x

sqrt_well_defined : AXIOM

FORALL (x:noimeg_real):

nonempty?({z:nonneg_real I z*z = x})

sqrt(x:nonneg_real) : {z:nonneg_real I z*z = x}

distance(sl,s2): real =

sqrt(sq(x(s2)-x(sl)) + sq(y(s2)-y(sl)))

collision(sl,s2): bool =

distance(sl,s2) <= collisionRange

alerting_distance(sl,s2): bool =

distance(sl,s2) <= alertRange

trkrate(phi): real =

IF phi = 0 then 0

ELSE 1845*tand(phi)/intruderSpeed

ENDIF

dx(intruder,evader,t): real =

(x(intruder) + t*intruderSpeed*cosd(heading(intruder)))

(x(evader) + t*evaderSpeed)

dy(intruder,evader,t): real =

(y(intruder) + t*intruderSpeed*sind(heading(intruder)))

y(evader)

dxdt(intruder): real =

intruderSpeed*cosd(heading(intruder)) - evaderSpeed

15

dydt(intruder): real =

intruderSpeed*sind(heading(intruder))

R(intruder.evader,t): real =

sqrt(sq(dx(intruder,evader,t)) + sq(dy(intruder.evader,t)))

tau(intruder.evader,t):real =

LET div = sq(dxdt(intruder)) + sq(dydt(intruder)) IN

IF div = 0 THEN 0

ELSE

-(dx(intruder,evader,t) * dxdt(intruder) +

dy(intruder,evader,t) * dydt(intruder))/div

ENDIF

'/.— Alerting algorithm

chkrange(range.t): bool =

range <= alertRange AND t <= alertTime

chktrack(intruder,evader,t): bool =

LET tau = tau(intruder,evader,0) IN

IF tau <= 0 THEN 7. tracks are diverging (or parallel)

chkrange(R(intruder,evader,0) ,t) '/, check range at prediction time t

ELSIF t+tau > alertTime THEN '/. tracks are converging

R(intruder,evader,alertTime) 7. closest approach beyond alert time

<= alertRange 7. check range at alert threshold

ELSE 7, closest approach within alert time.

R(intruder,evader,tau) '/, check range at closest approach.

<= alertRange

ENDIF

arc_loop(intruder,evader,arcrad,trkrate,idtrk,iarc): RECURSIVE bool =

IF iarc = maxStep THEN false

ELSE

LET tpred = iarc*tstep IN

LET xloc = x(evader) + evaderSpeed*tpred IN

LET yloc = y(evader) + evaderSpeed*tpred IN

'/."/. There are two cases trkrate > 0 or trkrate < 0

LET (xtrk.ytrk) =

IF trkrate > 0 THEN

(x(intruder) + arcrad*(sind(heading(intruder)+trkrate*tpred) -

sind(heading(intruder))) ,

16

y(intruder) + arcrad*(cosd(heading(intruder))-

cosd(heading(intruder)+trkrate*tpred)))

ELSE

(x(intruder) + arcrad*(sind(heading(intruder)) -

sind(heading(intruder))+trkrate*tpred),

y(intruder) + arcrad* (cosd(heading(intmder)+trkrate*tpred)-

cosd(heading(intruder))))

ENDIF IN

IF NOT mod(iarc,idtrk) = 0 THEN '/, not time for tangential track

LET range = sqrt(sq(xtrk-xloc) + sq(ytrk-yloc)) IN

IF chkrange(range,tpred) THEN true

ELSE arc_loop(intruder,evader,arcrad,trkrate,idtrk,iarc+1)

ENDIF

ELSE '/, tangential track

LET tantrk = heading(intruder) + tpred*trkrate IN

LET int = intruder WITH [x:=xtrk, y:=ytrk, heading:=tantrk] IN

LET eva = evader WITH [x:=xloc, y:=yloc] IN

IF chktrack(int,eva,tpred) THEN true

ELSE arc_loop(intruder,evader,arcrad,trkrate,idtrk,iarc+1)

ENDIF

ENDIF

ENDIF

MEASURE (maxStep - iarc)

larcalert(intruder,evader): bool =

LET phi = phi(intruder) IN

LET trkrate = trkrate(phi) IN

IF trkrate = 0 THEN

chktrack(intruder,evader,0)

ELSE

LET arcrad = sq(ihtruderSpeed)/(g*tand(phi)) IN

LET idtrk =

IF trkrate >= 3 THEN 1

ELSIF trkrate >= 1 + 1/2 THEN 2

ELSIF trkrate >= 3/4 THEN 4

ELSE 8

ENDIF IN

arc_loop(intruder,evader,arcrad,trkrate,idtrk, 0)

ENDIF

%— Model of trajectories

next_intruder_state(s,phi): State =

17

LET trk = heading(s) + tstep*trkrate(phi(s)) IN

s WITH [

x

y
heading

phi

]

= x(s) + intruderSpeed*tstep*cosd(heading(s)),

= y(s) + intruderSpeed*tstep*sind(heading(s)),

= trk,

= phi

intruder_trajectory(s,df,n): RECURSIVE State =

IF n = 0 THEN s

ELSE

next_intruder_state(intruder_trajectory(s, df, n-l).df(n))

ENDIF

MEASURE n

evader_trajectory(s,n): State =

(#

x := x(s) + evaderSpeed * tstep * n,

y := y(s),
heading := heading(s),

phi := phi(s)

#)

collision_scenario(intruder,evader,df,n): bool =

collision(intruder_trajectory(intruder,df,n) ,

evader_traj ectory(evader,n))

'/,— Axioms

sin_cos_sq_one : AXIOM

FORALL (x):

sq(sind(x)) + sq(cosd(x)) = 1

derivative_eq_zero_min : AXIOM

FORALL (intruder,t1,t2):

R(intruder,evader,t1+tau(intruder,evader,t1)) <=

R(intruder,evader,tl+t2)

asymptotic_decrease_zero_to_tau : AXIOM

FORALL (t,tl,t2:real) :

tau(intruder,evader,t) >= 0 AND t2 <= tau(intruder,evader,t) AND

tl <= t2

IMPLIES

18

R(intruder,evader,t+tl) >= R(intruder,evader,t+t2)

asymptotic_increase_tau_to_zero : AXIOM

FORALL (t,tl,t2:real) :

tau(intruder,evader,t) <= 0 AND tau(intruder,evader,t) <= tl AND

tl <= t2

IMPLIES

R(intruder,evader,t+t2) >= R(intruder,evader,t+tl)

'/,— Theorems and Properties

sqrt_of_sq: theorem

(sqrt(sq(x))) = abs{x)

phi_not_0_tan_not_0 : theorem

NOT phi = 0 implies not tand(phi) = 0

alarm_at_alerting_distance : THEOREM

FORALL (evader.intruder) :

alerting_distance(evader,intruder)

IMPLIES

larcalert(intruder,evader)

move_2500_to_1300_no_alarm_before_ll_seconds : THEOREM

EXISTS (intruder,evader,df,n) :

collision_scenario(intruder,evader,df,n+divtstep(11)) AND

distance(intruder.evader) = 2500 AND

distance(intruder_trajectory(intruder,df,n),

evader_trajectory(evader,n)) <= 1300 AND

FORALL (i:subrange(0,n)) :

NOT larcalert(intruder_trajectory(intruder,df,i),

evader_traj ectory(evader,i))

collision_invariant : LEMMA

FORALL (intruder,evader,df,n) :

collision_scenario(intruder,evader,df,n)

IMPLIES

FORALL(i:subrange(0,n)):

distance(intruder.trajectory(intruder,df,i),

evader_trajectory(evader,n)) <=

collisionRange+intruderSpeed*(n-i)*tstep

straight_line_farthest: LEMMA

19

FORALL (intruder.evader,df,n) :

LET straight_trajectory = LAMBDA(n:posnat):0 IN

distance(intruder,

intruder_.traj ectory (intruder, df,n)) <=

distance(intruder,

intruder_traj ectory(intruder,straight_traj ectory,n))

absolute_distance: LEMMA

FORALL (intruder,n) :

phi(intruder)=0

IMPLIES

LET straight_trajectory = LAMBDA(n:posnat):0 IN

distance(intruder,

intruder_trajectory(intruder,straight_traj ectory,n))

= intruderSpeed*n*tstep

bound : CONJECTURE

FORALL (intruder,evader,df,n) :

collision_scenario(intruder.evader,df,n)

IMPLIES

EXISTS(i:subrange(0,n)) :

NOT alerting_distance(evader_trajectory(evader,i),

intruder_trajectory(intruder,df,i)) AND

larcalert (intruder_.tr a j ectory (intruder, df,i) ,

evader_traj ectory(evader,i))

END AILS

20

